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SUMMARY

The goal of the research performed under this grant was to produce a
massively-parallel network architecture that could interpret speech signals
from video recordings of human talkers. This report summarizes the results'- -,

of this project: 1) A corpus of video recordings from two human speakers was
analyzed with image processing techniques and used as the data for this study;
2) We demonstrated that a feedforward network could be trained to categorize
vowels from these talkers. The performance was comparable to that of the
nearest neighbors technique and to trained humans on the same data; (3) We
developed a novel approach to sensory fusion by training a network to
transform from facial images to short-time spectral amplitude envelopes.
This information can be used to increase the signal-to-noise ratio and hence
the performance of acoustic speech recognition systems in noisy
environments; (4) We explored the use of recurrent networks to perform the
same mapping for continuous speech.

The results of this project demonstrate the feasibility of adding a visual
speech recognition component to enhance existing speech recognition
systems. Such a combined system could be used in noisy environments, such
as cockpits, where improved communication is needed. This demonstration
of presymbolic fusion of visual and acoustic speech signals is consistent with
our current understanding of human speech perception.. Further studies are
continuing to extend these results from vowels to consonants, and to develop
improved networks for combining information streams from multiple
sources.

PUBLICATIONS

Yuhas, B. P., Goldstein, M. H., Jr. & Sejnowski, T. J., Integration of acoustic
and visual speech signals using neural networks. IEEE
Communications Magazine , November, 65-71 (1989).

Yuhas, B. P., Goldstein, M. H. Jr., Jenkins, R. E., & Sejnowski, T. J., Combining
visual and acoustic speech signals with a neural network improves
intelligibility. In: D. Touretzky (Ed.) Advances in Neural Information
Processing Systems, 2. San Mateo, California: Morgan Kaufmann
Publishers, 1990.

Yuhas, B. P., Goldstein, M. H., Jr., Jenkins, R. E. & Sejnowski, T. J., Neural
network models of sensory integration for speech. Proceedings of the
IEEE (in press)



-3-

INTRODUCTION

Automatic speech recognizers currently perform poorly in the presence
of noise. Humans, on the other hand, often compensate for noise
degradation by extracting speech information from alternative sources and
then integrating this information with the acoustic signal. Loss of
information in the acoustic signal can be compensated for by using
information about speech articulation from the movements around the
mouth, or by using semantic information conveyed by facial expressions and
other gestures. The listener can also use knowledge of linguistic constraints
to compensate for ambiguities remaining in the received speech signals.

Efforts have been made to reduce the noise in the acoustic signal, but
few have attempted to use additional external information sources. One
notable exception is a system built by Eric Petajan (1987) for isolated digit
recognition that used vector-quantized binary images of ihe speaker's mouth.
In this system, the acoustic and visual speech information were
independently encoded into symbol strings, and a set of rules was used to
reconcile conflicting interpretations. The symbolic intermediates were
needed to perform the necessary processing and integration in real time on
the serial digital computers available. The massively-parallel architecture of
artificial neural networks make it feasible to explore subsymbolic alternatives
to Petajan's system. The use of high-dimensional representations allows
information from several sources to be combined "softly", before being
reduced to discrete symbols. In addition, learning algorithms provide a
means of training networks to fuse these signals without explicit rules or
restrictive a priori models.

The approach taken here was to use the visual speech signals to clean
up the acoustic signal. Neural networks are trained to estimate the associated
acoustic structure from the concurrent visual speech signal. This acoustic
estimate was then fused with the noise-degraded acoustic information. By
combining the visual and acoustic sources of speech information, we
demonstrated that the visual signal can be used to improve the performance
of automatic vowel recognition in the presence of noise. This approach does
not require categorical preprocessing or explicit rules. The performances of
these neural networks compared favorably with human performance and
with other pattern-matching and estimation techniques. Our results were
bazed on vowels spoken by single speakers, but this same approach can be
extended to multiple speakers and to consonants.
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NEURAL NETWORKS

The architecture of artificial neural networks is motivated by the
computational style found in biological nervous systems. The key features
are a large number of relatively simple nonlinear processing units and a high
degree of connectivity between these units. A unit performs a nonlinear
transformation on the sum of its inputs to produce an output signal. When
this output signal travels across a connection to another unit, the signals is
attenuated or amplified by the weight associated with that connection.
Computation is performed by the interaction of these units and signals.
Rather than having an explicit program, the computation is defined by the
properties of the individual units and their interconnects. As architectural
abstractions, these models differ from actual neural networks found in the
nervous systems. For example, the processing units used in this study
simply add their weighted inputs and have a static sigmoidal nonlinear
output function, while neurons in real nervous systems have more complex
spatiotemporal nonlinearities and are capable of much more complex
discriminations. Nevertheless, as an architecture, these networks provide
alternative approaches to difficult computational problems.

Feedforward network architectures were used in most of this study.
The units in a feedforward network were arranged in layers, with connections
only allowed between layers, and only in one direction. The units that
receive inputs from outside the network are referred to as input units, and
those that are observed from outside the network are output units. The
remaining units are referred to as hidden, because they only exchange signals
with other parts of the network. The units themselves use a nonlinear
sigmoid squashing function to transform the sum of their inputs. The
standard multilayered feedforward networks with arbitrary squashing
functions are a class of universal approximators. Moreover, any nonlinear
mapping can be learned by a network if there are sufficient data to
characterize the mapping and if the number of parameters in the network
matches the information content of the data.

A modified backpropagation algorithm was used to train feedforward
networks (Rumelhart, et al., 1986). The gradient was calculated in the
standard manner, but instead of using steepest descent, a conjugate-gradient
algorithm was used to update the weights. In addition, the fixed-step size
and momentum term associated with backpropagation were replaced with a
line-search minimization. Our neural networks were simulated on a MIPS
M/120 computer and an ANALOGIC AP5000 array-processor. Because of the
conjugate gradient learning algorithm, the time it took to perform one
backpropagation step varied depending upon the number of evaluations
required in the line-minimization search. For a network with 2559 weights it
took the MIPS M/120 approximately 35 msec to perform one evaluation. The
number of adiustable weights in a neural network can often exceed the
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number of training patterns. In these cases, the networks have too many free
parameters and are subject to the problem of overfitting or overlearning the
training data. The effects of overlearning can be minimized by increasing the
size of the training data set, by reducing the number of hidden units, or by
stopping the training before the network has completely converged.

THE SPEECH SIGNALS

The speech signals used were obtained from video recordings of a
seated speaker facing a camera under well-lit conditions. The visual and
acoustic signals were stored on a laser disc (Bernstein and Eberhardt, 1986)
where the individual frames and their corresponding speech segments were
indexed. The NTSC video standard was used (30 frames/sec) and each frame
had 33 milliseconds (ms) of speech associated with it. Phonemes usually are
shortened or dropped altogether during fluent speech, so single video frames
often span more than one phoneme. To avoid this problem, we selected
speech samples such as stressed vowels in isolated word or consonant-vowel-
consonant (CVC) type nonsense syllables that change relatively slowly. In
these contexts, the vowels often were steady state over periods of 50 to 100 ms.
For a given phoneme, a preliminary list of candidate words was identified
from a transcription of the laser disc. Each word was then played acoustically
to confirm the suspected pronunciation. A representative frame for the
vowel was then isolated by alternately dropping a frame and then listening
until the surrounding consonants were removed. The number of frames that
remained after this process depended upon the degree to which that
particular vowel was stressed. Stressed vowels, for example, can last up to
132 ms or 4 frames, while an unstressed vowel in continuous speech will
often not last the full 33 ms of a single frame. The acoustic signals of the
remaining frames were digitized and visually examined to ensure that
acoustic signal was approximately in steady state. From this set, a single
frame was selected only if the periodic wave form appeared relatively stable,
neither increasing nor decreasing in amplitude. This paper describes results
obtained using data from a single male speaker. A data set was constructed of
108 images of 9 different vowels in 12 sets. The vowels were taken from
words and CVCs. Because these words and syllables were spoken deliberately
and in isolation, these vowels were isolated easily. Data from a female
speaker were also studied.

Preprocessing the images. Instead of searching for an optimal
encoding of the input images, we chose a simple representation that seemed
to contain the relevant information. A rectangular area-of-interest was
automatically defined and centered about the mouth. The image was further
reduced to produce an image that could be comfortably handled by our
network simulations. Within the rectangle, the average value of each 4 x 4
pixel squares was computed to produce a topographically accurate grey-scale
image of 20 x 25 pixels. Rather than attempting to extract special features,
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this encoding represented a form that could be obtained easily through an
array of analog photoreceptors. Two methods of processing these images of
the speaker's mouth were explored. In the first approach, we treated the
images categorically and attempted to make hard phonemic decisions directly
from the images. Such linguistic identifications can be used to constrain the
linguistic interpretation of a noise-degraded acoustic signal. In the second
approach, we obtained acoustic information directly from the images by
estimating the transfer function of the vocal tract. These independent
estimates were then used to constrain the acoustic interpretation of the
noise-degraded acoustic signal directly.

The acoustic speech signal emitted from the mouth can be modeled as
the response of the vocal-tract filter to a switchable sound source. In a first-
order vocal-tract model, the configuration of the articulators (e.g, the mouth
opening, the lips, teeth, tongue, velum and glottis) defines the shape of the
vocal tract filter, which then determines the filter's frequency response. The
resonances of the vocal tract filter appear as peaks in the envelope of the
short-term power spectrum of the acoustic signal and are called formants.
While some of the articulatory features are often visible (e.g., the lips, teeth
and sometimes the tongue), other components of the articulatory system,
such as the glottis and velum, are not. Those articulators that are visible
tend to modify the acoustic signal in ways that are more susceptible to
acoustic distortion than those effects due to the hidden articulators. This
complementary structure can be exploited to improve the perception of
speech in noise.

CATEGORIZATION

Neural networks were trained to identify the vowel directly from the
image. The images were presented across 500 input units, and the output
consisted of 9 output units, each representing one of the nine vowels in the
data. An input image was correctly categorized when the activation value of
the correct vowel unit was larger than all the other output units. The data set
of 108 images was split into a test set and a training set of 54 images, each
containing a balanced set of vowels. The number of hidden units were
varied. A network was trained until the categorization of all 54 images in the
training set was perfect. Overtraining was minimized by immediately
terminating the training at this point, before the output units were driven to
saturation. After the network was trained, it then was tested on the second
set of 54 images from the same speaker.

Results. Performance levels were averaged across eight networks
having five hidden units, each initialized with different random weights.
The networks were trained on 54 patterns. For half of the networks, the
training and test sets were reversed. The eight networks trained on the male
data obtained an average performance of 76% correct categorizations for the
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images in the test set. A nearest neighbor classifier (NN) was constructed
using the training data as the set of stored templates and the results compared
with the performance of the neural network model. The individual images
from the test set were correlated with the stored templates, and the image
was classified according to its closest match. The process was repeated again,
but with the test and training sets reversed. The NN classifier correctly
classified the male data set with an average accuracy of 79%. The
performance of the network also compared favorably with two human
subjects tested and trained on the same data. After 5 training sessions, the
two subjects obtained an average of 70% on the images in the test set, with
performances in some follow-up sessions approaching 80%. The types of
errors made by the human subjects in these experiments were similar to
those made by the network as judged by comparing the confusion matrices.

SUBSYMBOLIC PROCESSING

Summerfield (1987) concluded from psychoacoustic experiments that
information from the visual and acoustic modalities must be integrated
before phonetic or lexical categorization takes place. The implication made is
that the acoustic and visual signal streams share a common representation at
their conflux. We have used the vocal tract transfer function as this common
representation, and we have shown that networks can be designed for
integrating visual and acoustic speech signals using this representation. An
estimate of the vocal tract's acoustic characteristics was obtained directly from
images of the speaker's mouth. This estimate then served as an independent
source of acoustic information and was used to constrain the interpretation of
the acoustic signal.

The acoustic speech signal is produced by a source signal that passes
through the vocal tract and is emitted from the mouth. For voiced speech,
the driving signal is a quasi-periodic pulse train convolved with the glottal
wave form. This driving signal's contribution to the short-term acoustic
spectrum is a series of harmonics reducing in amplitude by -12 dB per octave.
This reduction is partially compensated by the radiation of the acoustical
signal from the lips, which produces an effective gain of +6 dB per octave.
The spectral envelope of the short-term spectrum that remains after these
two effects are removed is the frequency response of the vocal tract filter. The
transfer function of the vocal tract can be estimated by measuring the short-
term spectral amplitude envelope (STSAE) of the acoustic signal.

There is not enough information in the visual speech signal to
completely specify the vocal-tract transfer function. Many different acoustic
signals can be produced by vocal tract configurations that correspond to the
same visual signal. Thus, the visual signals can provide only a partial
description of the vocal tract filter. Nonetheless, it may be possible to obtain a
good estimate of the vocal tract transfer function if additional constraints are
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considered. A feedforward neural network was trained to estimate the
STSAE of the acoustic signal directly from the visual signals around the
mouth. The estimate of the STSAE was then combined with estimates from
acoustic information to improve the signal-to-noise ratio prior to recognition.
The same images of the male speaker used in the cate gorization experiments
were used in these experiments. Each video frame had 33 ms of acoustic
speech associated with it. The short-term power spectra of the corresponding
acoustic data were calculated and the spectral envelopes were obtained using
cepstral analysis. Each smoothed envelope was sampled at 32 frequencies to
produce a vector of scaler values. These vectors were used to represent the
vocal-tract transfer functions corresponding to the images.

Vowels are largely identified by their spectral shape, and in particular
by the location of their spectral peaks, or formants. Nevertheless, evaluating
the quality of these spectral estimates is significantly more difficult than
judging the accuracy of a categorization because the perceptual processes
involved in processing the spectral peaks is not a well-understood process.
To assay our spectral estimates, a simple vowel recognition system was
constructed using a simple feedforward network trained to recognize nine
vowels from their STSAEs. The network was trained on 6 examples each of 9
different vowels until its performance was 100% on the training data. This
network served as a Prfect recognizer of the noise-free data and was used to
assess the benefit of the visually-estimated spectra when combined with the
noise-degraded acoustic spectra.

The vowel recognizer was presented with a STSAE through two
channels. The path shown on the right in Fig. 1 was for the information
obtained from the acoustic signal, while the path on the left provided spectral
estimates obtained independently from the corresponding visual speech
signal. The first step was to test the performance of the recognizer when the
acoustic spectral envelopes were degraded by noise. Zero-mean random
vectors were normalized and added to the training STSAEs to produce signals
with signal-to-noise ratios ranging from -12 dB to 24 dB. Noise corrupted
vectors were produced at 3 dB intervals from -12 dB to 24 dB. At each noise
level, 12 different vectors were produced for each of the STSAE in the set. At
each level, the performances of the recognizer on the degraded signals were
averaged. The overall performance on the training data fell with decreased
signal-to-noise ratios. At -12 dB, the recognizer operated at the chance level,
which was 11% with nine vowels in the data set.

The next step was to compensate for the noise degradation by
providing an independent estimate of the STSAE from the visual signal, as
shown on the left side of Fig. 1. The network on this pathway was trained to
estimate the spectral envelopes corresponding to the input images. The data
used to train this network were different from the data used to train the
recognizer. The noise-degraded acoustic signal was then combined with the
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output from the network processing the images to provide a single estimate
which is then passed on to the recognizer. The acoustic and visual signals
were weighted according to their relative information content to compensate
for the degraded performance at the signal-to-noise ratio extremes. At each
signal-to-noise ratio was varied and the optimal value was found empirically
to vary approximately linearly with the signal-to-noise ratio in dB, from 1 at -
12 dB signal-to-noise ratio to 0 at 24 dB. The performance is shown in Fig. 2.
Another method of fusing the two spectra was accomplished using a sigma-pi
neural network (Rumelhart, et al., 1986). These second-order networks took
the estimated STSAE, the noise-degraded acoustic STSAE and a measure of
the signal-to-noise ratio as input, and tried to produce a noise-free STSAE as
output. In contrast to the simple weighted sum used by first-order units, the
units in these second-order networks determine the activation level by
summing the weighted product or other units' output. The results from this
method were mixed: while the squared-error between the estimated and
actual spectra was significantly lower, their categorization was poorer. These
results suggest that the vowel recogrizer is doing something more
complicated than simply making a comparison based upon a squared-error
measure. It also raises questions as to the appropriateness of the squared-
error measure used for training.

Comparing performance. The quality of the networks' estimates were
compared to a combination of two optimal linear-estimation techniques. The
first step was to encode the images using a Hotelling or Karhunen-Loeve
transform. The images were encoded as five-dimensional vectors defined by
the largest principal components of the covariance matrix of the images in
the training set. This is an optimal encoding of the images with respect to a
least-squared-error (LSE) measure. The next step was to find a mapping from
these encoded image vectors to their corresponding short-term spectral
amplitude envelopes (STSAEs). The fit was found using a linear least-squares
fit. The estimates obtained by this two stage process were significantly poorer
in overall mean-squared error. The mean-squared error of the estimates
made by the networks were 46% better on t-'e training set and 12% better on
the Eest set. The main objective of this comparison was to show that arbitrary
encoding of the images may result in a loss of relevant information. In
contrast, the network learning algorithm allows the network to produce its
own encoding at the hidden layer based upon relevant features. The
activation levels of the five hidden units served to encode the image as did
the five-dimensional vectors obtained using principal components. The
primary difference is that the encoding found by the network optimized the
desired output, while the principal components optimized the LSE
reconstruction of the images.
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DYNAMICS AND SPEECH

In the work described above, attention was restricted to static visual
images, which are inherently ambiguous because they contain incomplete
information about the speech articulators. Speech is a dynamic process and
the articulators are physical structures that move. At a given moment, their
current positions are part of larger dynamic trajectories. These trajectories are
constrained by the mechanics of the physical system and by the linguistic
rules of the language. Dynamic dependencies could provide additional
constraints that can serve to restrict the acoustic interpretation of the visual
speech signal. In this section, we outline an approach to introducing dynamic
constraints in neural network models. One approach is to have projections
from the output units to the input layer (Jordan, 1988) or from hidden units
to the input layer (Elman, 1988).

When working with static images, it was possible to use a simple
vowel recognizer to test the quality and utility of the acoustic spectra
estimated from static images. TLe success of the vowel recognizer depended
on the careful selection of vowels from isolated words or syllables. For
continuous speech, however, it is difficult and often impossible to make these
definitive identifications of short speech segments taken out of context, so
alternative assessments are necessary. Networks with feedback were used to
estimate the STSAE from images within a larger context. The performance of
the network on continuous speech was evaluated on its ability to preserve the
salient features of the spectral sequences, such as the resonances, or formants,
of the estimated vocal tract filter. To see how well these formants were
identified by the network, the sequences of spectra were arranged in a visual
display similar to a spectrogram. The spectrogram shown in Fig. 3 was
created from spectra estimated from a sequence of images not in the training
set. In this form, we can observe the changes of energy in the different
frequency bands as a function of time. Clearly, much of the acoustic structure
was being estimated in these sequences. The ultimate test will be to either
resynthesize the acoustic speech signal from these estimated acoustic
parameters, or to feed the fused spectra into a full-scale speech recognizer.

CONCLUSIONS

Under noisy conditions, speech recognition can be aided by extracting
information from the visual speech signals and combining it with residual
acoustic information. Two representations for the speech information in the
visual signal were studied under this grant, both of which can be combined
with information from the acoustic signal. In the first case the visual signal
was treated symbolically, while in the second it was used to provide
subsymbolic information about the corresponding acoustic signal. These two
cases are two points on a continuum of speech descriptions. Other
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descriptions, such as description of the articulators themselves, could also
have been used.

A better understanding of the visual and acoustic sensory systems in
humans and other animals will lead to better artificial sensors and their
effective integration. Acoustic speech recognition systems, by using models of
the human cochlea as a preprocessor, are already benefitting from what is
known about the human auditory system. Synthetic cochleas that can process
massive amounts of sensory data in real time already have been fabricated in
analog VLSI (Mead, 1989). The output of these chips is a highly distilled,
parallel and distributed representation of the acoustic signal. Our results are
an encouraging first step toward solving the problem of fusing multiple
sources of distributed sensory data. Massively-parallel network models could
provide the means by which distributed representation can be integrated in
real-time for producing rapid recognition and decisive actions for automated
systems.
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FIGURE CAPTIONS

Figure 1. System used to combine visual and acoustic speech
information. A simple vowel recognizer was constructed to receive speech
signals from the two modalities. Independent estimates of the vocal tract
transfer function were produced and then combined with a weighted average
before being passed to the recognizer. A neural network was trained to
perform the mapping of the image into the estimated envelope of the
acoustic spectra. Noise was introduced into the acoustic speech signal and the
improvement due to the visual information was assessed.

Figure 2. Intell;gibility of noise-degraded speech as a function of
speech-to-noise ratio in d13. The lower curve shows the performance of the
recognizer under varying signal-to-noise conditions using only the acoustic
channel. The intermediate dashed curve shows the performance when the
two independent estimates are equally weighted. The top curve shows the
improved performance by using a weighting function based on the signal-to-
noise. When the visual signal is used alone, the percent correct is 55% across
all S/N levels.

Figure 3. Spectrograms created from the actual acoustic spectra are
compared to visually-estimated spectra for the sentence: "We will weigh
you". Individual spectral estimates were converted to a grey scale and then
aligned by frequency as a function of time. Actual acoustic data from the test
set are shown on the left and estimates produced by the feedback neural
network model are shown on the right.
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